视频博客(视频博客下载)
翻译 | AI科技大本营(rgznai100)
参与 | Joe,焦燕
2000年早期,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、 Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。
这些资源内容安排如下:知名研究者,研究机构,视频课程,YouTube,博客,媒体作家,书籍,Quora主题栏,Reddit,Github库,播客, 实事通讯媒体、会议、论文。
如果你也有好的资源是这里没有列出的,欢迎评论区一起交流!
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
Sebastian Thrun
个人官网:
http://robots.stanford.edu/
Wikipedia:
https://en.wikipedia.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/SebastianThrun
Google Scholar:
https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao
Quora:
https://www.quora.com/profile/Sebastian-Thrun
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
展开全文
个人官网:
http://robots.stanford.edu/
Wikipedia:
https://en.wikipedia.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/SebastianThrun
Google Scholar:
https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao
Quora:
https://www.quora.com/profile/Sebastian-Thrun
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
Yann LeCun
个人官网:
http://yann.lecun.com/
Wikipedia:
https://en.wikipedia.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/ylecun?
Google Scholar:
https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yann-LeCun
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
个人官网:
http://yann.lecun.com/
Wikipedia:
https://en.wikipedia.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/ylecun?
Google Scholar:
https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yann-LeCun
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
Nando de Freitas
个人官网:
http://www.cs.ubc.ca/~nando/
Wikipedia:
https://en.wikipedia.org/wiki/Nando_de_Freitas
Twitter:
https://twitter.com/NandoDF
Google Scholar:
https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
个人官网:
http://www.cs.ubc.ca/~nando/
Wikipedia:
https://en.wikipedia.org/wiki/Nando_de_Freitas
Twitter:
https://twitter.com/NandoDF
Google Scholar:
https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
Andrew Ng
个人官网:
http://www.andrewng.org/
Wikipedia:
https://en.wikipedia.org/wiki/Andrew_Ng
Twitter:
https://twitter.com/AndrewYNg
Google Scholar:
https://scholar.google.com/citations?use
Quora:
https://www.quora.com/profile/Andrew-Ng"
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
个人官网:
http://www.andrewng.org/
Wikipedia:
https://en.wikipedia.org/wiki/Andrew_Ng
Twitter:
https://twitter.com/AndrewYNg
Google Scholar:
https://scholar.google.com/citations?use
Quora:
https://www.quora.com/profile/Andrew-Ng"
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
Daphne Koller
个人官网:
http://ai.stanford.edu/users/koller/
Wikipedia:
https://en.wikipedia.org/wiki/Daphne_Koller
Twitter:
https://twitter.com/DaphneKoller?lang=en
Google Scholar:
https://scholar.google.com/citations?user=5Iqe53IAAAAJ
Quora:
https://www.quora.com/profile/Daphne-Koller
Quora Session:
https://www.quora.com/session/Daphne-Koller/1
个人官网:
http://ai.stanford.edu/users/koller/
Wikipedia:
https://en.wikipedia.org/wiki/Daphne_Koller
Twitter:
https://twitter.com/DaphneKoller?lang=en
Google Scholar:
https://scholar.google.com/citations?user=5Iqe53IAAAAJ
Quora:
https://www.quora.com/profile/Daphne-Koller
Quora Session:
https://www.quora.com/session/Daphne-Koller/1
Adam Coates
个人官网:
http://cs.stanford.edu/~acoates/
Twitter:
https://twitter.com/adampaulcoates
Google Scholar:
https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
个人官网:
http://cs.stanford.edu/~acoates/
Twitter:
https://twitter.com/adampaulcoates
Google Scholar:
https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
Jürgen Schmidhuber
个人官网:
http://people.idsia.ch/~juergen/
Wikipedia:
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
Google Scholar:
https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
个人官网:
http://people.idsia.ch/~juergen/
Wikipedia:
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
Google Scholar:
https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
Geoffrey Hinton
个人官网:
Wikipedia:
https://en.wikipedia.org/wiki/Geoffrey_Hinton
Google Scholar:
http://www.cs.toronto.edu/~hinton/
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
个人官网:
Wikipedia:
https://en.wikipedia.org/wiki/Geoffrey_Hinton
Google Scholar:
http://www.cs.toronto.edu/~hinton/
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
Terry Sejnowski
个人官网:
http://www.salk.edu/scientist/terrence-sejnowski/
Wikipedia:
https://en.wikipedia.org/wiki/Terry_Sejnowski
Twitter:
https://twitter.com/sejnowski?lang=en
Google Scholar:
https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
个人官网:
http://www.salk.edu/scientist/terrence-sejnowski/
Wikipedia:
https://en.wikipedia.org/wiki/Terry_Sejnowski
Twitter:
https://twitter.com/sejnowski?lang=en
Google Scholar:
https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
Michael Jordan
个人官网:
https://people.eecs.berkeley.edu/~jordan/
Wikipedia:
https://en.wikipedia.org/wiki/Michael_I._Jordan
Google Scholar:
https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
个人官网:
https://people.eecs.berkeley.edu/~jordan/
Wikipedia:
https://en.wikipedia.org/wiki/Michael_I._Jordan
Google Scholar:
https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
Peter Norvig
个人官网:
http://norvig.com/
Wikipedia:
https://en.wikipedia.org/wiki/Peter_Norvig
Google Scholar:
https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
个人官网:
http://norvig.com/
Wikipedia:
https://en.wikipedia.org/wiki/Peter_Norvig
Google Scholar:
https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
Yoshua Bengio
个人官网:
http://www.iro.umontreal.ca/~bengioy/yoshua_en/
Wikipedia:
https://en.wikipedia.org/wiki/Yoshua_Bengio
Google Scholar:
https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yoshua-Bengio
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
个人官网:
http://www.iro.umontreal.ca/~bengioy/yoshua_en/
Wikipedia:
https://en.wikipedia.org/wiki/Yoshua_Bengio
Google Scholar:
https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yoshua-Bengio
Reddit AMA:
http://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
Ina Goodfellow
个人官网:
http://www.iangoodfellow.com/
Wikipedia:
https://en.wikipedia.org/wiki/Ian_Goodfellow
Twitter:
https://twitter.com/goodfellow_ian
Google Scholar:
https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Ian-Goodfellow
Quora Session:
https://www.quora.com/session/Ian-Goodfellow/1
个人官网:
http://www.iangoodfellow.com/
Wikipedia:
https://en.wikipedia.org/wiki/Ian_Goodfellow
Twitter:
https://twitter.com/goodfellow_ian
Google Scholar:
https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Ian-Goodfellow
Quora Session:
https://www.quora.com/session/Ian-Goodfellow/1
Andrej Karpathy
个人官网:
http://karpathy.github.io/
Twitter:
https://twitter.com/karpathy
Google Scholar:
https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Andrej-Karpathy
Quora Session:
https://www.quora.com/session/Andrej-Karpathy/1
个人官网:
http://karpathy.github.io/
Twitter:
https://twitter.com/karpathy
Google Scholar:
https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Andrej-Karpathy
Quora Session:
https://www.quora.com/session/Andrej-Karpathy/1
Richard Socher
个人官网:
http://www.socher.org/
Twitter:
https://twitter.com/RichardSocher
Google Scholar:
https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en
Interview:
http://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
个人官网:
http://www.socher.org/
Twitter:
https://twitter.com/RichardSocher
Google Scholar:
https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en
Interview:
http://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
Demis Hassabis
个人官网:
http://demishassabis.com/
Wikipedia:
https://en.wikipedia.org/wiki/Demis_Hassabis
Twitter:
https://twitter.com/demishassabis
Google Scholar:
https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en
Interview:
https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/
个人官网:
http://demishassabis.com/
Wikipedia:
https://en.wikipedia.org/wiki/Demis_Hassabis
Twitter:
https://twitter.com/demishassabis
Google Scholar:
https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en
Interview:
https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/
Christopher Manning
个人官网:
https://nlp.stanford.edu/~manning/
Twitter:
https://twitter.com/chrmanning
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
个人官网:
https://nlp.stanford.edu/~manning/
Twitter:
https://twitter.com/chrmanning
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
Fei-Fei Li
个人官网:
http://vision.stanford.edu/people.html
Wikipedia:
https://en.wikipedia.org/wiki/Fei-Fei_Li
Twitter:
https://twitter.com/drfeifei
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
Ted Talk:
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en
个人官网:
http://vision.stanford.edu/people.html
Wikipedia:
https://en.wikipedia.org/wiki/Fei-Fei_Li
Twitter:
https://twitter.com/drfeifei
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
Ted Talk:
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en
François Chollet
个人官网:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Twitter:
https://twitter.com/fchollet
Google Scholar:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Fran%C3%A7ois-Chollet
Quora Session:
https://www.quora.com/session/Fran%C3%A7ois-Chollet/1
个人官网:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Twitter:
https://twitter.com/fchollet
Google Scholar:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Fran%C3%A7ois-Chollet
Quora Session:
https://www.quora.com/session/Fran%C3%A7ois-Chollet/1
Dan Jurafsky
个人官网:
https://web.stanford.edu/~jurafsky/
Wikipedia:
https://en.wikipedia.org/wiki/Daniel_Jurafsky
Twitter:
https://twitter.com/jurafsky
Google Scholar:
https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en
个人官网:
https://web.stanford.edu/~jurafsky/
Wikipedia:
https://en.wikipedia.org/wiki/Daniel_Jurafsky
Twitter:
https://twitter.com/jurafsky
Google Scholar:
https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en
Oren Etzioni
个人官网:
http://allenai.org/team/orene/
Wikipedia:
https://en.wikipedia.org/wiki/Oren_Etzioni
Twitter:
https://twitter.com/etzioni
Google Scholar:
https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en
Quora:
https://scholar.google.com/citations?user
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
个人官网:
http://allenai.org/team/orene/
Wikipedia:
https://en.wikipedia.org/wiki/Oren_Etzioni
Twitter:
https://twitter.com/etzioni
Google Scholar:
https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en
Quora:
https://scholar.google.com/citations?user
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
机构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
OpenAI
官网:https://openai.com/
Twitter:https://twitter.com/OpenAI
官网:https://openai.com/
Twitter:https://twitter.com/OpenAI
DeepMind
官网:https://deepmind.com/
Twitter:https://twitter.com/DeepMindA
官网:https://deepmind.com/
Twitter:https://twitter.com/DeepMindA
Google Research
官网:https://research.googleblog.com/
Twitter:https://twitter.com/googleresearch
官网:https://research.googleblog.com/
Twitter:https://twitter.com/googleresearch
AWS AI
官网:https://aws.amazon.com/blogs/ai/
Twitter:https://twitter.com/awscloud
官网:https://aws.amazon.com/blogs/ai/
Twitter:https://twitter.com/awscloud
Facebook AI Research
官网:https://research.fb.com/category/facebook-ai-research-fair/
官网:https://research.fb.com/category/facebook-ai-research-fair/
Microsoft Research
官网:https://www.microsoft.com/en-us/research/
Twitter:https://twitter.com/MSFTResearch
官网:https://www.microsoft.com/en-us/research/
Twitter:https://twitter.com/MSFTResearch
Baidu Research
官网:http://research.baidu.com/
Twitter:https://twitter.com/baiduresearch?lang=en
官网:http://research.baidu.com/
Twitter:https://twitter.com/baiduresearch?lang=en
IntelAI
官网:https://software.intel.com/en-us/ai
Twitter:https://twitter.com/IntelAI
官网:https://software.intel.com/en-us/ai
Twitter:https://twitter.com/IntelAI
AI2
官网:http://allenai.org/
Twitter:https://twitter.com/allenai_org
官网:http://allenai.org/
Twitter:https://twitter.com/allenai_org
Partnership on AI
官网:https://www.partnershiponai.org/
Twitter:https://twitter.com/partnershipai
官网:https://www.partnershiponai.org/
Twitter:https://twitter.com/partnershipai
视频课程
以下列出的是一些免费的视频课程和教程。
Coursera — Machine Learning (Andrew Ng):
https://www.coursera.org/learn/machine-learning#syllabus
Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):
https://www.coursera.org/learn/neural-networks
Udacity — Intro to Machine Learning (Sebastian Thrun):
https://classroom.udacity.com/courses/ud120
Udacity — Machine Learning (Georgia Tech):
https://www.udacity.com/course/machine-learning--ud262
Udacity — Deep Learning (Vincent Vanhoucke):
https://www.udacity.com/course/deep-learning--ud730
Machine Learning (mathematicalmonk):
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):
http://course.fast.ai/start.html
Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016) :
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):http://cs231n.stanford.edu/
Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017) :
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
(class link):http://web.stanford.edu/class/cs224n/
Oxford Deep NLP 2017 (Phil Blunsom et al.):
https://github.com/oxford-cs-deepnlp-2017/lectures
Reinforcement Learning (David Silver):
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
Practical Machine Learning Tutorial with Python (sentdex):
https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
Coursera — Machine Learning (Andrew Ng):
https://www.coursera.org/learn/machine-learning#syllabus
Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):
https://www.coursera.org/learn/neural-networks
Udacity — Intro to Machine Learning (Sebastian Thrun):
https://classroom.udacity.com/courses/ud120
Udacity — Machine Learning (Georgia Tech):
https://www.udacity.com/course/machine-learning--ud262
Udacity — Deep Learning (Vincent Vanhoucke):
https://www.udacity.com/course/deep-learning--ud730
Machine Learning (mathematicalmonk):
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):
http://course.fast.ai/start.html
Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016) :
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):http://cs231n.stanford.edu/
Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017) :
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
(class link):http://web.stanford.edu/class/cs224n/
Oxford Deep NLP 2017 (Phil Blunsom et al.):
https://github.com/oxford-cs-deepnlp-2017/lectures
Reinforcement Learning (David Silver):
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
Practical Machine Learning Tutorial with Python (sentdex):
https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
YouTube
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
sentdex (225K subscribers, 21M views):
https://www.youtube.com/user/sentdex
Artificial Intelligence A.I. (7M views):
https://www.youtube.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g
Siraj Raval (140K subscribers, 5M views):
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
Two Minute Papers (60K subscribers, 3.3M views):
https://www.youtube.com/user/keeroyz
DeepLearning.TV (42K subscribers, 1.7M views):
https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
Data School (37K subscribers, 1.8M views):
https://www.youtube.com/user/dataschool
Machine Learning Recipes with Josh Gordon (324K views):
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
Artificial Intelligence — Topic (10K subscribers):
https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views):
https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
Machine Learning at Berkeley (634 subscribers, 48K views):
https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views):
https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
Machine Learning TV (455 subscribers, 11K views):
https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
sentdex (225K subscribers, 21M views):
https://www.youtube.com/user/sentdex
Artificial Intelligence A.I. (7M views):
https://www.youtube.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g
Siraj Raval (140K subscribers, 5M views):
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
Two Minute Papers (60K subscribers, 3.3M views):
https://www.youtube.com/user/keeroyz
DeepLearning.TV (42K subscribers, 1.7M views):
https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
Data School (37K subscribers, 1.8M views):
https://www.youtube.com/user/dataschool
Machine Learning Recipes with Josh Gordon (324K views):
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
Artificial Intelligence — Topic (10K subscribers):
https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views):
https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
Machine Learning at Berkeley (634 subscribers, 48K views):
https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views):
https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
Machine Learning TV (455 subscribers, 11K views):
https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博客
Andrej Karpathy
博客:http://karpathy.github.io/
Twitter:https://twitter.com/karpathy
博客:http://karpathy.github.io/
Twitter:https://twitter.com/karpathy
i am trask
博客:http://iamtrask.github.io/
Twitter:https://twitter.com/iamtrask
博客:http://iamtrask.github.io/
Twitter:https://twitter.com/iamtrask
Christopher Olah
博客:http://colah.github.io/
Twitter:https://twitter.com/ch402
博客:http://colah.github.io/
Twitter:https://twitter.com/ch402
Top Bots
博客:http://www.topbots.com/
Twitter:https://twitter.com/topbots
博客:http://www.topbots.com/
Twitter:https://twitter.com/topbots
WildML
博客:http://www.wildml.com/
Twitter:https://twitter.com/dennybritz
博客:http://www.wildml.com/
Twitter:https://twitter.com/dennybritz
Distill
博客:http://distill.pub/
Twitter:https://twitter.com/distillpub
博客:http://distill.pub/
Twitter:https://twitter.com/distillpub
Machine Learning Mastery
博客:http://machinelearningmastery.com/blog/
Twitter:https://twitter.com/TeachTheMachine
博客:http://machinelearningmastery.com/blog/
Twitter:https://twitter.com/TeachTheMachine
FastML
博客:http://fastml.com/
Twitter:https://twitter.com/fastml_extra
博客:http://fastml.com/
Twitter:https://twitter.com/fastml_extra
Adventures in NI
博客:https://joanna-bryson.blogspot.de/
Twitter:https://twitter.com/j2bryson
博客:https://joanna-bryson.blogspot.de/
Twitter:https://twitter.com/j2bryson
Sebastian Ruder
博客:http://sebastianruder.com/
Twitter:https://twitter.com/seb_ruder
博客:http://sebastianruder.com/
Twitter:https://twitter.com/seb_ruder
Unsupervised Methods
博客:http://unsupervisedmethods.com/
Twitter:https://twitter.com/RobbieAllen
博客:http://unsupervisedmethods.com/
Twitter:https://twitter.com/RobbieAllen
Explosion
博客:https://explosion.ai/blog/
Twitter:https://twitter.com/explosion_ai
博客:https://explosion.ai/blog/
Twitter:https://twitter.com/explosion_ai
Tim Dettwers
博客:http://timdettmers.com/
Twitter:https://twitter.com/Tim_Dettmers
博客:http://timdettmers.com/
Twitter:https://twitter.com/Tim_Dettmers
When trees fall...
博客:http://blog.wtf.sg/
Twitter:https://twitter.com/tanshawn
博客:http://blog.wtf.sg/
Twitter:https://twitter.com/tanshawn
ML@B
博客:https://ml.berkeley.edu/blog/
Twitter:https://twitter.com/berkeleyml
博客:https://ml.berkeley.edu/blog/
Twitter:https://twitter.com/berkeleyml
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
Robbie Allen:
https://medium.com/@robbieallen
Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
Frank Chen:
https://medium.com/@withfries2
azeem:
https://medium.com/@azeem
Sam DeBrule:
https://medium.com/@samdebrule
Derrick Harris:
https://medium.com/@derrickharris
Yitaek Hwang:
https://medium.com/@yitaek
samim:
https://medium.com/@samim
Paul Boutin:
https://medium.com/@Paul_Boutin
Mariya Yao:
https://medium.com/@thinkmariya
Rob May:
https://medium.com/@robmay
Avinash Hindupur:
https://medium.com/@hindupuravinash
Robbie Allen:
https://medium.com/@robbieallen
Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
Frank Chen:
https://medium.com/@withfries2
azeem:
https://medium.com/@azeem
Sam DeBrule:
https://medium.com/@samdebrule
Derrick Harris:
https://medium.com/@derrickharris
Yitaek Hwang:
https://medium.com/@yitaek
samim:
https://medium.com/@samim
Paul Boutin:
https://medium.com/@Paul_Boutin
Mariya Yao:
https://medium.com/@thinkmariya
Rob May:
https://medium.com/@robmay
Avinash Hindupur:
https://medium.com/@hindupuravinash
书籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
机器学习
Understanding Machine Learning From Theory to Algorithms:
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
Machine Learning Yearning:
http://www.mlyearning.org/
A Course in Machine Learning:
http://ciml.info/
Machine Learning:
https://www.intechopen.com/books/machine_learning
Neural Networks and Deep Learning:
http://neuralnetworksanddeeplearning.com/
Deep Learning Book:
http://www.deeplearningbook.org/
Reinforcement Learning: An Introduction:
http://incompleteideas.net/sutton/book/the-book-2nd.html
Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
Understanding Machine Learning From Theory to Algorithms:
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
Machine Learning Yearning:
http://www.mlyearning.org/
A Course in Machine Learning:
http://ciml.info/
Machine Learning:
https://www.intechopen.com/books/machine_learning
Neural Networks and Deep Learning:
http://neuralnetworksanddeeplearning.com/
Deep Learning Book:
http://www.deeplearningbook.org/
Reinforcement Learning: An Introduction:
http://incompleteideas.net/sutton/book/the-book-2nd.html
Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
自然语言处理
Speech and Language Processing (3rd ed. draft):
https://web.stanford.edu/~jurafsky/slp3/
Natural Language Processing with Python:
http://www.nltk.org/book/
An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
Speech and Language Processing (3rd ed. draft):
https://web.stanford.edu/~jurafsky/slp3/
Natural Language Processing with Python:
http://www.nltk.org/book/
An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
数学
Introduction to Statistical Thought:
http://people.math.umass.edu/~lavine/Book/book.pdf
Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
Think Stats: Probability and Statistics for Python programmers:
http://greenteapress.com/wp/think-stats-2e/
The Probability and Statistics Cookbook:
http://statistics.zone/
Linear Algebra:
http://joshua.smcvt.edu/linearalgebra/book.pdf
Linear Algebra Done Wrong:
http://www.math.brown.edu/~treil/papers/LADW/book.pdf
Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
Calculus I for Computer Science and Statistics Students:
http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Introduction to Statistical Thought:
http://people.math.umass.edu/~lavine/Book/book.pdf
Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
Think Stats: Probability and Statistics for Python programmers:
http://greenteapress.com/wp/think-stats-2e/
The Probability and Statistics Cookbook:
http://statistics.zone/
Linear Algebra:
http://joshua.smcvt.edu/linearalgebra/book.pdf
Linear Algebra Done Wrong:
http://www.math.brown.edu/~treil/papers/LADW/book.pdf
Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
Calculus I for Computer Science and Statistics Students:
http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。
Computer-Science (5.6M followers):
https://www.quora.com/topic/Computer-Science
Machine-Learning (1.1M followers):
https://www.quora.com/topic/Machine-Learning
Artificial-Intelligence (635K followers):
https://www.quora.com/topic/Artificial-Intelligence
Deep-Learning (167K followers):
https://www.quora.com/topic/Deep-Learning
Natural-Language-Processing (155K followers):
https://www.quora.com/topic/Natural-Language-Processing
Classification-machine-learning (119K followers):
https://www.quora.com/topic/Classification-machine-learning
Artificial-General-Intelligence (82K followers)
https://www.quora.com/topic/Artificial-General-Intelligence
Convolutional-Neural-Networks-CNNs (25K followers):
https://www.quora.com/topic/Artificial-General-Intelligence
Computational-Linguistics (23K followers):
https://www.quora.com/topic/Computational-Linguistics
Recurrent-Neural-Networks (17.4K followers):
https://www.quora.com/topic/Recurrent-Neural-Networks
Computer-Science (5.6M followers):
https://www.quora.com/topic/Computer-Science
Machine-Learning (1.1M followers):
https://www.quora.com/topic/Machine-Learning
Artificial-Intelligence (635K followers):
https://www.quora.com/topic/Artificial-Intelligence
Deep-Learning (167K followers):
https://www.quora.com/topic/Deep-Learning
Natural-Language-Processing (155K followers):
https://www.quora.com/topic/Natural-Language-Processing
Classification-machine-learning (119K followers):
https://www.quora.com/topic/Classification-machine-learning
Artificial-General-Intelligence (82K followers)
https://www.quora.com/topic/Artificial-General-Intelligence
Convolutional-Neural-Networks-CNNs (25K followers):
https://www.quora.com/topic/Artificial-General-Intelligence
Computational-Linguistics (23K followers):
https://www.quora.com/topic/Computational-Linguistics
Recurrent-Neural-Networks (17.4K followers):
https://www.quora.com/topic/Recurrent-Neural-Networks
Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。
/r/MachineLearning (111K readers):
https://www.reddit.com/r/MachineLearning
/r/robotics/ (43K readers):
https://www.reddit.com/r/robotics/
/r/artificial (35K readers):
https://www.reddit.com/r/artificial
/r/datascience (34K readers):
https://www.reddit.com/r/datascience
/r/learnmachinelearning (11K readers):
https://www.reddit.com/r/learnmachinelearning
/r/computervision (11K readers):
https://www.reddit.com/r/computervision
/r/MLQuestions (8K readers):
https://www.reddit.com/r/MLQuestions
/r/LanguageTechnology (7K readers):
https://www.reddit.com/r/LanguageTechnology
/r/mlclass (4K readers):
https://www.reddit.com/r/mlclass
/r/mlpapers (4K readers):
https://www.reddit.com/r/mlpapers
/r/MachineLearning (111K readers):
https://www.reddit.com/r/MachineLearning
/r/robotics/ (43K readers):
https://www.reddit.com/r/robotics/
/r/artificial (35K readers):
https://www.reddit.com/r/artificial
/r/datascience (34K readers):
https://www.reddit.com/r/datascience
/r/learnmachinelearning (11K readers):
https://www.reddit.com/r/learnmachinelearning
/r/computervision (11K readers):
https://www.reddit.com/r/computervision
/r/MLQuestions (8K readers):
https://www.reddit.com/r/MLQuestions
/r/LanguageTechnology (7K readers):
https://www.reddit.com/r/LanguageTechnology
/r/mlclass (4K readers):
https://www.reddit.com/r/mlclass
/r/mlpapers (4K readers):
https://www.reddit.com/r/mlpapers
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。
Machine Learning (6K repos):
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
Deep Learning (3K repos):
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
Tensorflow (2K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
Neural Network (1K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
NLP (1K repos):
https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories
Machine Learning (6K repos):
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
Deep Learning (3K repos):
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
Tensorflow (2K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
Neural Network (1K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
NLP (1K repos):
https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories
播客
对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。
ConcerningAI
官网:
https://concerning.ai/
iTunes:
https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
官网:
https://concerning.ai/
iTunes:
https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
This Week in Machine Learning and AI
官网:
https://twimlai.com/
iTunes:
https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
官网:
https://twimlai.com/
iTunes:
https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
The AI Podcast
官网:
https://blogs.nvidia.com/ai-podcast/
iTunes:
https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
官网:
https://blogs.nvidia.com/ai-podcast/
iTunes:
https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
Data Skeptic
官网:
http://dataskeptic.com/
iTunes:
https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
官网:
http://dataskeptic.com/
iTunes:
https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
Linear Digressions
官网:
https://itunes.apple.com/us/podcast/linear-digressions/id941219323
iTunes:
https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
官网:
https://itunes.apple.com/us/podcast/linear-digressions/id941219323
iTunes:
https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
Partially Dervative
官网:
http://partiallyderivative.com/
iTunes:
https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
官网:
http://partiallyderivative.com/
iTunes:
https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
O'Reilly Data Show
官网:
http://radar.oreilly.com/tag/oreilly-data-show-podcast
iTunes:
https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
官网:
http://radar.oreilly.com/tag/oreilly-data-show-podcast
iTunes:
https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
Learning Machines 101
官网:
http://www.learningmachines101.com/
iTunes:
https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
官网:
http://www.learningmachines101.com/
iTunes:
https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
The Talking Machines
官网:
http://www.thetalkingmachines.com/
iTunes:
https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
官网:
http://www.thetalkingmachines.com/
iTunes:
https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
Artificial Intelligence in Industry
官网:
官网:
http://techemergence.com/
iTunes:
https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
http://techemergence.com/
iTunes:
https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
Machine Learning Guide
官网
http://ocdevel.com/podcasts/machine-learning
https://itunes.apple...iTunes:
https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
官网
http://ocdevel.com/podcasts/machine-learning
https://itunes.apple...iTunes:
https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
The Exponential View:
https://www.getrevue.co/profile/azeem
AI Weekly:
http://aiweekly.co/
Deep Hunt:
https://deephunt.in/
O’Reilly Artificial Intelligence Newsletter:
http://www.oreilly.com/ai/newsletter.html
Machine Learning Weekly:
http://mlweekly.com/
Data Science Weekly Newsletter:
https://www.datascienceweekly.org/
Machine Learnings:
http://subscribe.machinelearnings.co/
Artificial Intelligence News:
http://aiweekly.co/
When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
Inside AI:
https://inside.com/technically-sentient
Kurzweil AI:
http://www.kurzweilai.net/create-account
Import AI:
https://jack-clark.net/import-ai/
The Wild Week in AI:
https://www.getrevue.co/profile/wildml
Deep Learning Weekly:
http://www.deeplearningweekly.com/
Data Science Weekly:
https://www.datascienceweekly.org/
KDnuggets Newsletter:
http://www.kdnuggets.com/news/subscribe.html?qst
The Exponential View:
https://www.getrevue.co/profile/azeem
AI Weekly:
http://aiweekly.co/
Deep Hunt:
https://deephunt.in/
O’Reilly Artificial Intelligence Newsletter:
http://www.oreilly.com/ai/newsletter.html
Machine Learning Weekly:
http://mlweekly.com/
Data Science Weekly Newsletter:
https://www.datascienceweekly.org/
Machine Learnings:
http://subscribe.machinelearnings.co/
Artificial Intelligence News:
http://aiweekly.co/
When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
Inside AI:
https://inside.com/technically-sentient
Kurzweil AI:
http://www.kurzweilai.net/create-account
Import AI:
https://jack-clark.net/import-ai/
The Wild Week in AI:
https://www.getrevue.co/profile/wildml
Deep Learning Weekly:
http://www.deeplearningweekly.com/
Data Science Weekly:
https://www.datascienceweekly.org/
KDnuggets Newsletter:
http://www.kdnuggets.com/news/subscribe.html?qst
会议
随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。
学术会议
NIPS (Neural Information Processing Systems):
https://nips.cc/
ICML (International Conference on Machine Learning):
https://2017.icml.cc
KDD (Knowledge Discovery and Data Mining):
http://www.kdd.org/
ICLR (International Conference on Learning Representations):
http://www.iclr.cc/
ACL (Association for Computational Linguistics):
http://acl2017.org/
EMNLP (Empirical Methods in Natural Language Processing):
http://emnlp2017.net/
CVPR (Computer Vision and PatternRecognition):
http://cvpr2017.thecvf.com/
ICCF(InternationalConferenceonComputerVision):
http://iccv2017.thecvf.com/
NIPS (Neural Information Processing Systems):
https://nips.cc/
ICML (International Conference on Machine Learning):
https://2017.icml.cc
KDD (Knowledge Discovery and Data Mining):
http://www.kdd.org/
ICLR (International Conference on Learning Representations):
http://www.iclr.cc/
ACL (Association for Computational Linguistics):
http://acl2017.org/
EMNLP (Empirical Methods in Natural Language Processing):
http://emnlp2017.net/
CVPR (Computer Vision and PatternRecognition):
http://cvpr2017.thecvf.com/
ICCF(InternationalConferenceonComputerVision):
http://iccv2017.thecvf.com/
专业会议
O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
Machine Learning Conference (MLConf):
http://mlconf.com/
AI Expo (North America, Europe, World):
https://www.ai-expo.net/
AI Summit:
https://theaisummit.com/
AI Conference:
https://aiconference.ticketleap.com/helloworld/
O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
Machine Learning Conference (MLConf):
http://mlconf.com/
AI Expo (North America, Europe, World):
https://www.ai-expo.net/
AI Summit:
https://theaisummit.com/
AI Conference:
https://aiconference.ticketleap.com/helloworld/
论文
arXiv.org上特定领域论文集:
Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
Learning (Computer Science):
https://arxiv.org/list/cs.LG/recent
Machine Learning (Stats):
https://arxiv.org/list/stat.ML/recent
NLP:
https://arxiv.org/list/cs.CL/recent
Computer Vision:
https://arxiv.org/list/cs.CV/recent
Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
Learning (Computer Science):
https://arxiv.org/list/cs.LG/recent
Machine Learning (Stats):
https://arxiv.org/list/stat.ML/recent
NLP:
https://arxiv.org/list/cs.CL/recent
Computer Vision:
https://arxiv.org/list/cs.CV/recent
Semantic Scholar搜索结果:
Neural Networks (179K results):
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
Machine Learning (94K results):
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
Natural Language (62K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
Computer Vision (55K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
Deep Learning (24K results):
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
Neural Networks (179K results):
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
Machine Learning (94K results):
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
Natural Language (62K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
Computer Vision (55K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
Deep Learning (24K results):
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。
http://www.arxiv-sanity.com/
http://www.arxiv-sanity.com/
作者:Robbie Allen
原文:https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
作者:Robbie Allen
原文:https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
人类感知外界信息,80%以上通过视觉得到。2015年,微软在ImageNet大赛中,算法识别率首次超越人类,视觉由此成为人工智能最为活跃的领域。为此,AI100特邀哈尔滨工业大学副教授、视觉技术研究室负责人屈老师,为大家介绍计算机视觉原理及实战。扫描上图二维码或加微信csdn02,了解更多课程信息。
相关文章
-
微商客户资源(微商货源网精准客源)详细阅读
微商找客源是对微商来说非常重要的一件事,很多做微商的就是苦苦支撑着因为没有客源,微商如何找客源一直是一个不衰的话题,下面我们就来讨论下这个话题。一:定...
2022-09-08 18893
-
什么是AR(什么是ar导航)详细阅读
增强现实的AR互动营销增强现实的AR互动营销一款叫做《口袋妖怪GO》的手游在欧美火了,在还未上线的中国,#PokemanGo#这一话题的微博阅读量已经...
2022-09-08 18155
-
弯弯的月亮像小船(弯弯的月亮像小船,小小的船儿两头尖)详细阅读
点击上方蓝字关注我们你拍一,我拍一,一个小孩坐飞机。你拍二,我拍二,两个小孩丢手绢。你拍三,我拍三,三个小孩来搬砖。你拍四,我拍四,四个小孩写大字。你...
2022-09-08 13608
-
流苏是什么(流苏是什么样子的图片)详细阅读
导语 听说流苏和秋天更配哦!流苏这个元素也不是今时今日才流行起来的,能经久不衰是因为它真的美呆了~踏进9月,秋高气爽,随风摇曳的流苏真心是风情万种!宝...
2022-09-08 636
-
淘口令是什么意思(什么叫做淘口令)详细阅读
现在开淘宝的越来越多了。但是做得好的好的始终还是那么多,好多人因为刚开始很迷茫,不知道怎么做,或者做到一半发现没有效果,无奈之下只好放弃了,我作为一个...
2022-09-08 659
-
发家致富网(发财致富网)详细阅读
前言:面相五行人格与性格职业密切相关,有什么用的性格就有什么样的命运,性格决定命运。有些人需要白手起家获得财富,有些人则有可能会发横财,你会通过什么方...
2022-09-08 634
-
兼职在家工作(在家工作的兼职)详细阅读
力哥说理财,简单又好玩。跟着力哥走,理财不用愁!本文3100字,阅读约6分钟我要介绍的赚钱工作就是兼职写稿赚稿费。主业靠写作发大财是件非常困难的事,只...
2022-09-08 652
-
系统流程图(系统流程图是描述)详细阅读
数据流程图(简称DFD)是一种能全面地描述信息系统逻辑模型的主要工具。简言之,就是以图形的方式来描述数据在系统流程中流动和处理的移动变换过程,反映数据...
2022-09-08 614
发表评论